Impacts of Bone Marrow Stem Cells on Caspase-3 Levels after Spinal Cord Injury in Mice

Authors

  • Davood Mehrabani Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
  • Noushin Gashmardi Department of Physiology, College of Sciences, Fars Science and Research Branch, Islamic Azad University, Fars, Iran; and Department of Physiology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
  • Seyed Ebrahim Hosseini Department of Physiology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
  • Zahra Khodabandeh Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
Abstract:

Spinal cord injury (SCI) is a drastic disability that leads to spinal cord impairment. This study sought to determine the effects of bone marrow stem cells (BMSCs) on caspase-3 levels after acute SCI in mice. Forty-two mice were randomly divided into 3 groups: control (2 subcategories), subjected to no intervention; sham (3 subcategories), subjected to acute SCI; and experimental (2 subcategories), subjected to SCI and cell transplantation. In the experimental group, 2×105 BMSCs were injected intravenously 1 day after SCI. The mesenchymal property of the cells was assessed. The animals in the 3 groups were sacrificed 1, 21, and 35 days after the induction of injury and caspase-3 levels were evaluated using a caspase-3 assay kit. The obtained values were analyzed with ANOVA and Tukey tests using GraphPad and SPSS. Based on the assessments, the transplanted cells were spindle-shaped and were negative for the hematopoietic markers of CD34 and CD45 and positive for the expression of the mesenchymal marker of CD90 and osteogenic induction. The caspase-3 levels showed a significant increase in the sham and experimental groups in comparison to the control group. One day after SCI, the caspase-3 level was significantly higher in the sham group (1.157±0.117) than in the other groups (P<0.000). Twenty-one days after SCI, the caspase-3 level was significantly lower in the experimental group than in the sham group (0.4±0.095 vs. 0.793±0.076; P˂0.000). Thirty-five days following SCI, the caspase-3 level was lower in the experimental group than in the sham group (0.223±0.027 vs. 0.643±0.058; P˂0.000). We conclude that BMSC transplantation was able to downregulate the caspase-3 level after acute SCI, underscoring the role of caspase-3 as a marker for the assessment of treatment efficacy in acute SCI.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Improvement of Spinal Cord Injury in Rat Model via Transplantation of Neural Stem Cells Derived From Bone Marrow

Abstract Background & Aims: Cell therapy is among the novel therapeutic methods effective in the treatment of spinal cord injuries. The aim of the present study was using neural stem cells (NSCs) in treating contusion spinal cord injury in rat model. Methods: Bone marrow stromal cells (BMSCs) were isolated from adult rats...

full text

Effects of Local Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells in Combination with Low Level Laser Therapy in Repair of Experimental Acute Spinal Cord Injury in Rats

Objective- The aim of this study was to demonstrate the efficacy MSCs transplantation in combination with low level laser irradiation (low level laser irradiation) in repair of experimental acute spinal cord injury. Design- Experimental study. Animals- 28 adult male Wistar Rats. Procedures- A ballon- compression technique was used to produce an injury at the T8-T9 level of spi...

full text

Bone marrow stromal cells inhibit caspase-12 expression in rats with spinal cord injury

The mechanisms underlying the potentially beneficial effect of bone marrow stem cells (BMSCs) on spinal cord injury (SCI) are unknown. Therefore, the aim of the present study was to explore the protective effect of BMSCs in rats with SCI. A total of 45 adult male Sprague-Dawley rats were randomly divided into three groups; the SCI group (n=15), the BMSC group (n=15) and the sham-operation group...

full text

P24: Neural Stem/Progenitor Cells Treatment for Spinal Cord Injury

لطفاً به چکیده انگلیسی مراجعه شود.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 42  issue 6

pages  593- 598

publication date 2017-09-19

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023